Kartezyen Çarpım-Bağıntı-Fonksiyon

KARTEZYEN ÇARPIM BAĞINTI

 

A. SIRALI n Lİ

n tane nesnenin belli bir öncelik sırasına göre düzenlenip, tek bir nesne gibi düşünülmesiyle elde edilen ifadeye sıralı n li denir.

(a, b) sıralı ikilisinde;

a ya birinci bileşen, b ye ikinci bileşen denir.

a ¹ b ise, (a, b) ¹ (b, a) dır.

(a, b) = (c, d) ise, (a = c ve b = d) dir.

 

 

B. KARTEZYEN ÇARPIM

A ve B herhangi iki küme olmak üzere, birinci bileşeni A kümesinden, ikinci bileşeni B kümesinden alınarak oluşturulan bütün sıralı ikililerin kümesine, A ile B nin kartezyen çarpımı denir.

A kartezyen çarpım B kümesi A ´ B ile gösterilir.

A ´ B = {(x, y) : x Î A ve y Î B} dir.

A ¹ B ise, A ´ B ¹ B ´ A dır.

 

 

C. KARTEZYEN ÇARPIMIN ÖZELİKLERİ

  1. 1) s(A) = m ve s(B) = n ise

s(A ´ B) = s(B ´ A) = m × n dir.

  1. A ´ (B ´ C) = (A ´ B) ´ C
  2. A ´ (B È C) = (A ´ B) È (A ´ C)
  3. (B È C) ´ A = (B ´ A) È (C ´ A)
  4. A ´ (B Ç C) = (A ´ B) Ç (A ´ C)
  5. (B Ç C) ´ A = (B ´ A) Ç (C ´ A)
  6. A ´ Æ = Æ ´ A = Æ  

 

 

D. BAĞINTI

A ve B herhangi iki küme olmak üzere A ´ B nin her alt kümesine A dan B ye bağıntı denir.

Bağıntı genellikle b ile gösterilir.

b Ì A ´ B ise, b = {(x, y) : (x, y) Î A ´ B} dir.

Ü

s(A) = m ve s(B) = n ise,

A dan B ye 2m×n tane bağıntı tanımlanabilir.

Ü

A ´ A nın herhangi bir alt kümesine A dan A ya bağıntı ya da A da bağıntı denir.

Ü

s(A) = m ve s(B) = n olmak üzere,

A dan B ye tanımlanabilen r elemanlı (r £ m × n) bağıntı sayısı

Ü

b Ì A ´ B olmak üzere,

b = {(x, y) : (x, y) Î A ´ B} bağıntısının tersi

b–1 Ì B ´ A dır.

Buna göre, b bağıntısının tersi

b–1 = {(y, x) : (x, y) Î b} dır.

 

 

E. BAĞINTININ ÖZELİKLERİ

b, A da tanımlı bir bağıntı olsun.

 

1. Yansıma Özeliği

A kümesinin bütün x elemanları için (x, x) Î b ise, b yansıyandır.

"x Î A için, (x, x) Î b ise, b yansıyandır. (" : Her)

 

2. Simetri Özeliği

b bağıntısının bütün (x, y) elemanları için (y, x) Î b ise, b simetriktir.

"(x, y) Î b için (y, x) Î b ise, b simetriktir.

Ü

b bağıntısı simetrik ise b = b–1 dir.

Ü

s(A) = n olmak üzere, A kümesinde tanımlanabilecek simetrik bağıntı sayısı dir.

Ü

s(A) = n olmak üzere, A kümesinde tanımlanabilecek yansıyan bağıntı sayısı dir.

 

3. Ters Simetri Özeliği

b bağıntısı A kümesinde tanımlı olsun.

x ¹ y iken "(x, y) Î b için (y, x) Ï b ise, b ters simetriktir.

b bağıntısında (x, x) elemanın bulunması ters simetri özeliğini bozmaz.

 

4. Geçişme Özeliği

b, A da tanımlı bir bağıntı olsun.

"[(x, y) Î b ve (y, z) Î b] için (x, z) Î b ise,

b bağıntısının geçişme özeliği vardır.

Boş kümeden farklı bir A kümesinde tanımlanan b = Æ bağıntısında yansıma özeliği yoktur. Simetri, Ters simetri, geçişme özeliği vardır.

 

 

F. BAĞINTI ÇEŞİTLERİ

1. Denklik Bağıntısı

b bağıntısı A kümesinde tanımlı olsun.

b; Yansıma, Simetri, Geçişme özeliğini sağlıyorsa denklik bağıntısıdır.

Ü

b, A kümesinde tanımlı bir denklik bağıntısı olsun. (x, y) Î b ise x ve y elemanları b bağıntısına göre denktir denir ve x º y şeklinde yazılır.

Ü

b, A kümesinde tanımlı bir denklik bağıntısı olsun. A da x elemanına denk olan bütün elemanların kümesine x in denklik sınıfı denir ve şeklinde gösterilir. x in denklik sınıfının kümesi,

     

 

2. Sıralama Bağıntısı

A kümesinde tanımlı b bağıntısında; Yansıma, Ters simetri, Geçişme özeliği varsa b sıralama bağıntısıdır.

Bir bağıntı hem denklik, hem de sıralama bağıntısı olabilir.

 


FONKSİYON

 

A. TANIM

A ¹ Æ ve B ¹ Æ olmak üzere, A dan B ye bir b bağıntısı verilmiş olsun.
A nın her elemanı B nin elemanlarıyla en az bir kez ve en çok bir kez eşleniyorsa bu bağıntıya fonksiyon denir.

"x Î A ve y Î B olmak üzere, A dan B ye bir f fonksiyonu
f : A
® B ya da x ® f(x) = y biçiminde gösterilir. A ya fonksiyonun tanım kümesi, B ye de değer kümesi denir.

Yukarıda A dan B ye tanımlanan f fonksiyonu

f = {(a, 1), (b, 2), (c, 3), (d, 2)}

biçiminde de gösterilir.

Ü

Her fonksiyon bir bağıntıdır. Fakat her bağıntı fonksiyon olmayabilir.

Ü

Görüntü kümesi değer kümesinin alt kümesidir.

Ü

s(A) = m ve s(B) = n olmak üzere,

  i) A dan B ye nm tane fonksiyon tanımlanabilir.

 ii) B den A ya mn tane fonksiyon tanımlanabilir.

iii) A dan B ye tanımlanabilen fonksiyon olmayan bağıntıların sayısı 2m × n – nm dir.

Ü

Grafiği verilen bir bağıntının fonksiyon olup olmadığını anlamak için, y eksenine paralel doğrular çizilir. Bu doğrular fonksiyonun belirttiği eğride en az bir ve en çok bir noktayı kesiyorsa verilen bağıntı x ten y ye bir fonksiyondur.

 

 

B. FONKSİYONLARDA İŞLEMLER

A Ç B ¹ Æ olmak üzere,

fonksiyonları tanımlansın.

  1. (f + g) : A Ç B ® , (f + g)(x) = f(x) + g(x)
  2. (f – g) : A Ç B ® , (f – g)(x) = f(x) – g(x)
  3. (f × g) : A Ç B ® , (f × g)(x) = f(x) × g(x)
  4. "x Î A Ç B için, g(x) ¹ 0 olmak üzere,

  1. c Î olmak üzere,

(c × f) : A ® , (c × f)(x) = c × f(x) tir.

 

C. FONKSİYON ÇEŞİTLERİ

1. Bire Bir Fonksiyon

Bir fonksiyonda farklı elemanların görüntüleri de farklıysa fonksiyon bire birdir..

BBuna göre, bire bir fonksiyonda,

"x1, x2 Î A için, x1 ¹ x2 iken f(x1) ¹ f(x2) olur.

Diğer bir ifadeyle,

"x1, x2 Î A için, f(x1) = f(x2) iken

x1 = x2 ise, f  fonksiyonu bire birdir.

Ü

s(A) = m ve s(B) = n (n ³ m) olmak üzere,

A dan B ye tanımlanabilecek bire bir fonksiyonların sayısı,

 

2. Örten Fonksiyon

Görüntü kümesi değer kümesine eşit olan fonksiyonlara örten fonksiyon denir.

Ü

f : A ® B

f(A) = B ise, f örtendir.

Ü

s(A) = m olmak üzere, A dan A ya tanımlanabilen bire bir örten fonksiyonların sayısı,

m! = m × (m – 1) × (m – 2) × ... × 3 × 2 × 1 dir.

 

3. İçine Fonksiyon

Örten olmayan fonksiyona içine fonksiyon denir.

Ü

İçine fonksiyonun değer kümesinde eşlenmemiş eleman vardır.

Ü

s(A) = m olmak üzere, A dan A ya tanımlanabilen içine fonksiyonların sayısı mm – m! dir.

 

4. Birim (Etkisiz) Fonksiyon

Her elemanı kendisine eşleyen fonksiyona birim fonksiyon denir.

     

ise, f birim (etkisiz) fonksiyondur.

Ü

Birim fonksiyon genellikle I ile gösterilir.

 

5. Sabit Fonksiyon

Tanım kümesindeki bütün elemanları değer küme-sindeki bir elemana eşleyen fonksiyona sabit fonksiyon denir.

Ü

"x Î A ve c Î B için,

      f : A ® B

      f(x) = c

ise, f sabit fonksiyondur.

Ü

s(A) = m, s(B) = n olmak üzere,

A dan B ye n tane sabit fonksiyon tanımlanabilir.

 

6. Çift ve Tek Fonksiyon

f(–x) = f(x) ise, f fonksiyonu çift fonksiyondur.

f(–x) = –f(x) ise, f fonksiyonu tek fonksiyondur.

Ü

Çift fonksiyonların grafikleri Oy eksenine göre simetriktir.

Ü

Tek fonksiyonların grafikleri orijine göre simetriktir.

 

D. EŞİT FONKSİYON

       f : A ® B

     g : A ® B

Her x Î A için f(x) = g(x) ise, f fonksiyonu g fonksiyonuna eşittir.

 

E. PERMÜTASYON FONKSİYON

       f : A ® A

olmak üzere, f fonksiyonu bire bir ve örten ise, f fonksiyonuna permütasyon fonksiyon denir.

A = {a, b, c} olmak üzere, f : A ® A

f = {(a, b), (b, c), (c, a)}

fonksiyonu permütasyon fonksiyon olup

biçiminde gösterilir.

 

 

F. TERS FONKSİYON

f : A ® B, f = {(x, y)|x Î A, y Î B} bire bir ve örten fonksiyon olmak üzere,

f–1 : B ® A, f–1 = {(y, x)|(x, y) Î f} fonksiyonuna f nin ters fonksiyonu denir.

(x, y) Î f ise, (y, x) Î f–1 olduğu için,

y = f(x) ise, x = f–1(y) dir.

Ayrıca, (f–1)–1 = f dir.

 

(f–1)–1 = f dir. Ancak, (f–1(x))–1 ¹ f(x) tir.

 

f fonksiyonu bire bir ve örten değilse, f–1 fonksiyon değildir.

 

f : A ® B ise, f–1 : B ® A olduğu için, f nin tanım kümesi, f–1 in değer kümesidir. f nin değer kümesi de, f–1 in tanım kümesidir.

 

f(a) = b ise, f–1(b) = a dır.

f–1(b) = a ise, f(a) = b dir.

 

 

Ü

y = f(x) fonksiyonunun grafiği ile y = f–1(x) in grafiği
y = x doğrusuna göre birbirinin simetriğidir.

     

Ü

olmak üzere,

Ü

olmak üzere,

 

 

G. BİLEŞKE FONKSİYON

f : A ® B, g : B ® C fonksiyonları tanımlansın.

f ve g yi kullanarak A kümesinin elemanlarını C kümesinin elemanlarına eşleyen fonksiyona g ile f nin bileşke fonksiyonu denir.

     

Buna göre,

f : A ® B ve g : B ® C olmak üzere, gof : A ® C fonksiyonuna f ile g nin bileşke fonksiyonu denir ve g bileşke f diye okunur.

Ü

(gof)(x) = g[f(x)] tir.

 

Bileşke işleminin değişme özeliği yoktur.

Bu durumda, fog ¹ gof dir.

Bazı fonksiyonlar için fog = gof olabilir. Ancak bu “fonksiyonlarda değişme özeliği yoktur.” gerçeğini değiştirmez.

 

Ü

Fonksiyonlarda bileşke işleminin birleşme özeliği vardır.

Bu durumda (fog)oh = fo(goh) = fogoh olur.

Ü

I birim fonksiyon olmak üzere,

foI = Iof = f ve

f–1of = fof–1 = I dır.

Ü

f, g ve h fonksiyonları bire bir ve örten olmak üzere,

(fog)–1 = g–1of–1 ve

(fogoh)–1 = h–1og–1of–1 dir.

Ü

(fog)(x) = h(x)

ise, f(x) = (hog–1)(x) dir.

ise, g(x) = (f–1oh)(x) tir.

 

•  f–1 (x) = f(x) tir.

•  (fof) (x) = x

•  (fofof) (x) = f(x)

•  (fofofof) (x) = x

...

 

 

H. FONKSİYONUN GRAFİĞİ

Bir fonksiyonun elemanlarına analitik düzlemde karşılık gelen noktaların kümesine bu fonksiyonun grafiği denir.

f : A ® B, f = {(x, y)|x Î A, y Î B, y = f(x)}

(a, b) Î f

olduğundan

f(a) = b dir.

Ayrıca, f–1(b) = a dır.

 

Ü

Yukarıdaki y = f(x) fonksiyonunun grafiğine göre,

f(–3) = 3, f(–2) = 1, f(–1) = 2, f(0) = 2, f(1) = 1,

f(2) = 0, f(3) = 2, f(4) = 1, f(5) = 0 dır.

 

 






Bu sayfa hakkında yorum ekle:
İsmin:
Mesajınız:

 
Kullanıcı adı:
Şifre:
Reklam
 
 


 
Loading
 


 
Bugün 7 ziyaretçi (35 klik) kişi burdaydı!
=> Sen de ücretsiz bir internet sitesi kurmak ister misin? O zaman burayı tıkla! <=